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Abstract. We apply airborne measurements across three seasons (summer, winter, spring 2017-2018) in a multi-inversion 

framework to quantify methane emissions from the US Corn Belt and Upper Midwest, a key agricultural and wetland source 

region. Combing our seasonal results with prior fall values we find that wetlands are the largest regional methane source 

(32%, 20 [16-23] Gg/d), while livestock (enteric/manure; 25%, 15 [14-17] Gg/d) are the largest anthropogenic source. 25 

Natural gas/petroleum, waste/landfills, and coal mines collectively make up the remainder. Optimized fluxes improve model 

agreement with independent datasets within and beyond the study timeframe. Inversions reveal coherent and seasonally 

dependent spatial errors in the WetCHARTs ensemble mean wetland emissions, with an underestimate for the Prairie 

Pothole region but an overestimate for Great Lakes coastal wetlands. Wetland extent and emission temperature dependence 

have the largest influence on prediction accuracy; better representation of coupled soil temperature-hydrology effects is 30 

therefore needed. Our optimized regional livestock emissions agree well with Gridded EPA estimates during spring (to 

within 7%), but are ~25% higher during summer/winter. Spatial analysis further shows good top-down/bottom-up agreement 

for beef facilities, but larger (~30%) seasonal discrepancies for dairies and hog farms. Findings thus support bottom-up 

enteric emission estimates but suggest errors for manure; we propose that the latter reflects inadequate treatment of 

management factors including field application. Overall, our results confirm the importance of intensive animal agriculture 35 

for regional methane emissions, implying substantial mitigation opportunities through improved management. 
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1 Introduction 

Atmospheric methane (CH4) has increased global radiative forcing by 0.97 W/m2 since 1750 (IPCC, 2013), making it the 

most important anthropogenic greenhouse gas after carbon dioxide (CO2). Methane concentrations stabilized during the 

1990s but resumed their increasing trend post-2007, with unclear causation (Kirschke et al., 2013; McNorton et al., 2018; 40 

Saunois et al., 2016; Thompson et al., 2018; Turner et al., 2017; Turner et al., 2019; Dlugokencky et al., 2011). Prior work 

suggests that US emission increases may account for 30-60% of the renewed global methane growth rate, with trends 

especially large in the central US (Turner et al., 2016). Quantifying emissions in this area is thus crucial for understanding 

the North American methane budget and its role in driving global trends. Here we employ new measurements from the GEM 

(Greenhouse Emissions in the Midwest) aircraft campaign in a multi-inversion framework to develop constraints on methane 45 

emissions from the Upper Midwest region. 

Recent studies imply uncertainties in the magnitude and distribution of North American methane emissions (Kirschke et al., 

2013; Miller and Michalak, 2017; Dlugokencky et al., 2011). For example, Turner et al. (2015) found based on 

measurements from the Greenhouse Gases Observing SATellite (GOSAT) that the aggregated 2009-2011 US flux is 1.6 

too low in the Emissions Database for Global Atmospheric Research 4.2 (EDGAR 4.2 (2017); estimated US source of 26 50 

Tg/y). However, subsequent work also using GOSAT retrievals (Maasakkers et al., 2019) concluded that the US flux is well-

represented in the more recent Gridded Environmental Protection Agency inventory (GEPA (Maasakkers et al., 2016))—

with a US flux just 12% higher than that of EDGAR 4.2—and argued that the inferred EDGAR 4.2 biases may instead 

reflect spatial errors in that inventory. Surface and aircraft-based inversion studies have further pointed to EPA bottom-up 

underestimates both nationally (Miller et al., 2013; Kort et al., 2008; Xiao et al., 2008; Karion et al., 2013; Wecht et al., 55 

2014; Caulton et al., 2014) and regionally (Chen et al., 2018). 

Wetlands are thought to be the single largest North American methane source (~30% of the total flux (Turner et al., 2015)), 

but there are major uncertainties in the magnitude and spatio-temporal distribution of these emissions (Melton et al., 2013; 

Wania et al., 2013; Bruhwiler et al., 2014). For example, recent studies suggest an overestimate of wetland fluxes in Canada 

and the southeastern US (Miller et al., 2016; Sheng et al., 2018b), and that western Canadian and northern US wetland 60 

emissions have a broader spatial distribution than is predicted by models (Miller et al., 2014). Northern wetland emissions 

have strong seasonality with a typical onset in late spring, peak in July-August, and decline in the fall with the onset of 

freezing. Bottom-up models have been shown to both under- and over-predict the width of this seasonal emission window, 

depending on location (Pickett-Heaps et al., 2011; Pugh et al., 2018; Knox et al., 2019; Peltola et al., 2019).  

Livestock are the second-largest North American methane source, accounting for an estimated ~25% of the total continental 65 

flux (~35% of the anthropogenic flux) during 2009-2011 (2015). However, enteric and manure emissions vary strongly with 

animal type, diet, management, and environmental factors (Niu et al., 2018; Charmley et al., 2016; Montes et al., 2013; 

Grant et al., 2015; Lassey, 2007; VanderZaag et al., 2014), and top-down studies have revealed large uncertainties in the 

resulting source estimates. For example, analyses of space-based, aircraft, and tall tower observations (Wecht et al., 2014; 

Miller et al., 2013) imply a 40%-100% underestimate of North American livestock emissions in the EDGAR v4.2 and 2013 70 

EPA inventories. Tall tower measurements similarly pointed to a 1.8-fold GEPA livestock emission underestimate for the 

US Midwest (Chen et al., 2018). Space-based methane retrievals from GOSAT imply that US emissions rose by ~20% 

between 2010 and 2016, with a possible contribution from growing Midwest swine manure emissions (Sheng et al., 2018a). 

Previous studies have also revealed uncertainties in the spatial allocation of US livestock methane emissions: the spatial R2 

between EDGAR v4.2 FT2010 and GEPA is only 0.5 for enteric fermentation and 0.1 for manure management, with the 75 

mismatch for the latter most significant in the Upper Midwest (Hristov et al., 2017). An airborne facility-based analysis of 

concentrated animal feeding operations in this area likewise pointed to spatial and temporal errors in bottom-up manure 

emissions (Yu et al., 2020). 

The Upper Midwest is a crucial region for atmospheric methane: its extensive wetlands and > 700 million livestock (USDA-

NASS, 2018) have been estimated to account for 30% and 35% of the total North American methane flux from wetlands and 80 

animal agriculture, respectively (Maasakkers et al., 2016; Bloom et al., 2017). The GEM study included extensive aircraft-
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based measurements of methane and related species across the Upper Midwest during three seasons (Aug. 2017, Jan. 2018, 

and May-Jun. 2018, Fig. 1). The airborne sampling targeted wetland and agriculture emissions in particular, affording a 

unique opportunity to advance understanding of these sources. Here, we employ high-resolution chemical transport modeling 

(GEOS-Chem CTM at 0.25° × 0.3125°) in a multi-inversion framework (combining sector-based, Gaussian Mixture Model 85 

and adjoint 4D-Var analyses) to interpret the GEM datasets in terms of regional methane sources, with a focus on livestock 

and wetlands. 

2 Data and methods 

2.1 GEM flights and measurement payload 

The GEM aircraft campaign was designed to survey regional methane sources via downwind and upwind transects. Figure 1 90 

shows sampling tracks, including 23 flights (156 hours) across three seasons (GEM1: 8 flights, 12-24 Aug. 2017; GEM2: 7 

flights, 17-28 Jan. 2018; GEM3: 8 flights, 21 May-2 Jun. 2018). Flights ranged from 4-8 h in duration (mean: 6 h) and took 

place in the daytime mixed layer (between 10:00 and 19:00 local standard time, 200-600 m AGL) onboard a Mooney aircraft 

with ~280 km/h boundary layer cruise speed (Scientific Aviation Inc.). Tracks were selected and optimized on the day of 

flight (avoiding light, variable or shifting winds, poorly-developed mixed layers, and frontal systems) to minimize analysis 95 

errors due to uncertain meteorology. Along with mixed-layer surveying, each flight included 1-2 vertical profiles to 

characterize the atmosphere’s vertical structure from the surface to lower free troposphere. The GEM flights also included 

extensive point source characterization as described by Yu et al. (2020).  

A cavity ring-down spectrometer (CRDS G2301 for GEM1, G2210-m for GEM2 and GEM3; Picarro Inc., USA) was 

deployed on the aircraft to quantify methane, ethane (C2H6, GEM2 and GEM3 only), water vapor (H2O) and carbon dioxide 100 

(CO2) mole fractions at 1 Hz. Ground-based calibrations employed compressed ambient-level gas cylinders traceable to 

National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Laboratory (GML) standards on the WMO 

X2004A CH4 calibration scale. The instrumental precision for methane is < 1 ppb, and the overall accuracy is estimated at < 

3.5 ppb based on the expanded uncertainties for the calibration standard. We use 1-minute averaged observations to 

constrain regional fluxes. Additional onboard observations included: nitrous oxide (N2O), carbon monoxide (CO), H2O, and 105 

CO2 mole fractions by continuous-wave tunable infrared laser absorption spectrometry (0.5 Hz, Aerodyne Research Inc., 

USA) as described by Gvakharia et al. (2018); ozone (O3) mole fractions (0.2 Hz; dual-beam ultraviolet spectrometer, model 

205, 2B Technologies Inc., USA); temperature and relative humidity (1 Hz; model HMP60, Vaisala Corp., Finland); plus 

GPS location, wind speed and direction, ambient pressure, and other relevant flight parameters as described by Yu et al. 

(2020). 110 

2.2 Forward modelling framework 

2.2.1 GEOS-Chem methane simulation and prior emissions 

We use the GEOS-Chem CTM (v11-02; http://acmg.seas.harvard.edu/geos) and its adjoint (v35) to optimize regional 

methane emissions. Simulations are performed on a nested 0.25° × 0.3125° grid over North America (9.75°-60° N, 60°-130° 

W; Fig. 1) using GEOS-FP meteorological fields from the National Aeronautics and Space Administration (NASA) Global 115 

Modeling and Assimilation Office (GMAO, 2013), with 5- and 10-minute timesteps for transport and emissions, 

respectively. Three-hourly dynamic boundary conditions (BC) are from global simulations at 2° × 2.5° and bias-corrected as 

described later. Initial conditions are obtained from a 25-year global spin-up at 2° × 2.5° (bias-corrected in the same 

manner), followed by a 30-day high-resolution (0.25° × 0.3125°) spin-up over our nested domain. 

Prior methane emissions in the model are as follows. Wetland emissions use the WetCHARTs ensemble mean (Bloom et al., 120 

2017), uniformly scaled up by 10% to match the global estimate from Kirschke et al. (2013). Anthropogenic emissions use 

the GEPA inventory (Maasakkers et al., 2016) over the US and EDGAR v4.3.2 (2017) elsewhere, except with Canadian + 
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Mexican oil and gas emissions from CanMex (Sheng et al., 2017). Emissions from biomass burning use the Quick Fire 

Emissions Dataset (QFED) (Darmenov and Silva, 2015), and those from geological seeps and termites follow Maasakkers et 

al. (2019) and Fung et al. (1991), respectively. Simulations include a set of tagged tracers to track methane from relevant 125 

source sectors as detailed in Sect. 2.3.  

Our analyses focus on the Upper Midwest, defined here to include the north-central US and south-central Canada region 

shown in Fig. 1. Figure 2 maps the prior emissions for summer, winter and spring. According to the above inventories, 

wetlands (36% of the total annual flux) and livestock (23%) represent the two largest regional methane sources. Natural gas 

and petroleum systems, wastewater and landfills, coal mines, and other sources contribute the remaining 15%, 12%, 9% and 130 

5%, respectively. Seasonality in the prior emissions is dominated by wetlands; these vary from 39 Gg/d in Jul.-Aug. 2017 

(GEM1) to 4 Gg/d in Jan. 2018 (GEM2), with an onset in late May during the GEM3 timeframe. The prior livestock 

emissions vary from 17 Gg/d in Jul.-Aug. 2017 (GEM1) to 11 Gg/d in Jan. 2018 (GEM2) due to the temperature-dependent 

manure source. Figure 2 shows that wetland emissions are concentrated in the north of the Upper Midwest domain, whereas 

livestock and other anthropogenic emissions occur predominantly to the south. This spatial separation provides an important 135 

advantage for resolving source contributions in our inversions. 

The major atmospheric methane sink (90% of the total loss) is oxidation by hydroxyl radical (OH), computed in the model 

using archived 3-D monthly OH fields from a full-chemistry simulation (v5-07-08). Other loss processes include: 

stratospheric oxidation (6% of the total sink), computed in the model using archived monthly loss frequencies from the 

NASA Global Modeling Initiative (Murray et al., 2013); soil absorption (3%), computed following Fung et al. (1991); and 140 

tropospheric oxidation by chlorine (Cl, 2%), computed using archived 3-D monthly Cl fields from Sherwen et al. (2016). 

The resulting global tropospheric methane lifetime in our simulations is 12 years. 

2.2.2 Evaluating model boundary and initial conditions 

Given the large atmospheric methane burden (1850-1950 ppb) relative to the magnitude of North American enhancements 

(up to 200 ppb in our prior simulations), careful background evaluation is needed to avoid a biased source optimization. We 145 

therefore use measurements over the remote Pacific from the Atmospheric Tomography Mission (ATom; flight tracks shown 

in Fig. 1) to evaluate and correct the model boundary and initial conditions. ATom featured pole-to-pole sampling with 

continuous vertical profiling (0.2-12 km) and onboard measurements including methane (Picarro model G2401m, Picarro 

Inc., USA) and a wide suite of other atmospheric species (Wofsy et al., 2018).  

Figure S1 compares tropospheric background methane measurements (represented as 0.1 quantiles within 1° latitude bins) 150 

from ATom3 (Sep.-Oct. 2017; flight altitudes ≤ 10 km) and ATom4 (Apr.-May 2018; flight altitudes ≤ 8 km) with GEOS-

Chem predictions along the flight tracks. The model-measurement background difference over North American latitudes 

averages 5.4 ppb (0.3%) for ATom3 and 9.2 ppb (0.5%) for ATom4. We correct the model boundary and initial conditions 

using a smoothed spline fit of this 0.1 quantile difference to latitude, with GEM1 (Jul-Aug 2017) and GEM2 (Jan 2018) 

corrected based on ATom3 and GEM3 (May-Jun 2018) corrected based on ATom4.  155 

Finally, as described later we assess the potential impact of any residual model background errors through a set of sensitivity 

inversions in which the bias-corrected boundary conditions are included in the state vector for further optimization. Results 

are described in Sec. 2.5 and employ a 0.4% background error standard deviation based on the above model-measurement 

disparities. 

2.2.3 Assessing meteorological uncertainties 160 

We use two approaches to assess the potential impacts of model transport errors on our findings. First, we test whether a 

misrepresentation of regional-scale synoptic transport could bias our inversion results by evaluating the optimized model 

against independent datasets from different years, as described in Sect. 2.4. Second, we assess model uncertainties in vertical 

mixing using planetary boundary layer (PBL) depth estimates derived from balloon-based radiosonde profiles in the 
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Integrated Global Radiosonde Archive Version 2 (IGRA v2). We use in this analysis 00:00 UTC (18:00 or 19:00 local 165 

standard time) sonde launch data from six sites in the Upper Midwest (Fig. 1, red triangles) during Aug. 2017 (GEM1), Jan. 

2018 (GEM2), and May 2018 (GEM3). Depending on season, the 00:00 UTC sounding can occur after the collapse of the 

daytime mixed layer, but the preceding day’s PBL depth can still generally be determined from vertical temperature and dew 

point transitions atop the residual layer. The resulting PBL estimates are then compared with the mean midday (12:00-16:00) 

value in the model. Figure S2 shows that the resulting model PBL biases average less than 10%, with mean 170 

model:measurement ratios of 0.98, 0.97, and 0.90 for summer, winter, and spring respectively. While the GEOS-FP daytime 

mixing heights were shown previously to be biased high (by 30-50%) over the US Southeast during summer (Millet et al., 

2015), we find here that no such bias manifests over the Upper Midwest. 

2.3 Inverse modelling framework 

We quantify methane emissions in the Upper Midwest using a multi-inversion framework that combines: 1) sector-based 175 

analytical inversions, with the prior spatial distribution of emissions taken as a hard constraint; 2) spatial and sectoral 

clustering of grid cells using a Gaussian Mixture Model (GMM), with subsequent analytical optimization; and 3) application 

of the GEOS-Chem adjoint to spatially optimize fluxes on the 0.25°0.3125° model grid. The above inversions employ 

widely differing assumptions and constraints, and together they allow us to identify robust aspects of the derived methane 

flux fields and quantify the sensitivity of results to these assumptions. We perform the above inversions separately for each 180 

season (summer: GEM1, winter: GEM2, spring: GEM3). Inversion performance is discussed in Sec. 2.5. 

2.3.1 Cost function and error specification 

All inversions in this study optimize methane emissions by minimizing the Bayesian cost function 𝐽(𝒙): 

𝐽(𝒙) = (𝒙 − 𝒙𝒂)𝑻𝐒𝐚
−𝟏(𝒙 − 𝒙𝒂) + 𝛾(𝒚 − 𝐹(𝒙))

𝑻
𝐒𝐎

−𝟏(𝒚 − 𝐹(𝒙)) (1) 

where 𝒙 is the state vector to be optimized (defined differently for the various inversion frameworks), 𝒙𝒂 is the vector of 

prior emissions, 𝐒𝐚  is the error covariance matrix for the prior emissions, 𝒚 and 𝐹(𝒙) are respectively the observed and 185 

simulated methane mixing ratios along the GEM flight tracks, and 𝐒𝐎 is the error covariance matrix for the observing system 

(including both measurement and model contributions). The regularization parameter 𝛾 balances the prior and observational 

contributions to 𝐽(𝒙), and is set to 10 for our base-case analyses as discussed in Sect. 2.5. 

Prior errors are prescribed as follows. Wetland emission uncertainties are based on the standard deviation ( σ) of the 

WetCHARTs ensemble on the 0.25°×0.3125° model grid, averaging 140% for summer (σ = 55 Gg/d) and spring (σ = 34 190 

Gg/d) and 310% for winter (σ = 12 Gg/d) on the Upper Midwest domain of Fig. 1. For anthropogenic emissions, we employ 

a scale-dependent uncertainty (encompassing magnitude and displacement uncertainties) following Maasakkers et al. (2016); 

the resulting error standard deviation averages 40%-105% across sectors over our study region. For other sources we assume 

a prior error standard deviation of 50% following earlier studies (Maasakkers et al., 2019; Turner et al., 2015; Wecht et al., 

2014; Zhang et al., 2018; Sheng et al., 2018b). For inversions optimizing the total methane flux across sectors, the above 195 

terms are combined in quadrature as the diagonal elements of the prior error covariance matrix.  

We find for our study region that spatial autocorrelation in the prior annual wetland emissions decays below 0.8 on a ~200 

km length scale, reflecting regional environmental influences such as temperature, precipitation, and landcover (Bloom et al., 

2017). In the adjoint 4D-Var inversions we therefore use this 200 km length scale (similar to the 275 km used by Wecht et 

al. (2014)) to populate the corresponding off-diagonal elements of the prior error covariance matrix. We assume no spatial 200 

error correlation for anthropogenic emissions following recommendations from Maasakkers et al. (2016). Our analytical 

inversions solve for emissions by sector or by aggregated region, and we employ diagonal prior errors accordingly in those 

cases. 
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The observational error covariance matrix is constructed from the residual standard deviation of the observation-prior model 

difference across a 2°×2° moving window (Heald et al., 2004). The resulting error standard deviation, including forward 205 

model and instrumental contributions, averages 26 ppb and is assumed diagonal. The overall observing system error is hence 

dominated by forward model and representation errors rather than by the < 1 ppb measurement precision. 

2.3.2 Sector-based inversions 

We first derive an optimized set of methane emissions by solving d𝐽(𝒙)/d𝒙 = 0 analytically by sector. Seven state vector 

elements are thus optimized across the nested model domain, representing emissions from 1) wetlands, 2) livestock, 3) fossil 210 

fuel, 4) rice, 5) biomass burning, 6) other anthropogenic emissions (landfill, waste water, and other), and 7) other natural 

emissions (geological seeps and termites). Over the time- and space-scale of our inversions the methane emission-

concentration relationship is linear, and we thus construct the Jacobian matrix 𝐊 using tagged tracers for each of the above 

source sectors. The sector-based inversions offer the advantage of direct source attribution, but with increased potential for 

aggregation error given the prescribed emission distributions. 215 

2.3.3 GMM inversions 

The GMM inversions cluster individual (~25 km) grid cells with similar emission characteristics, and then analytically 

optimize methane fluxes by cluster. GMM is a probabilistic approach that assumes each subpopulation (or cluster) is a 

multivariate Gaussian distribution (i.e., each cluster is ellipsoidal and centered in the feature space) (Turner and Jacob, 

2015). We use an expectation-maximization algorithm (Dempster et al., 1977) to find the maximum-likelihood GMM 220 

classification for seven emission sectors in the Upper Midwest (wetland, livestock, fossil fuel, rice, biomass burning, other 

anthropogenic emissions, and other natural emissions) and for total emissions in other regions. In each case the number of 

clusters Γ ∈ [1,9] is selected based on the Bayesian Information Criterion (Schwarz, 1978), with low-emission clusters (e.g., 

termites and seeps) grouped to avoid weak sensitivity in the Jacobian matrix. Sector-specific clusters in the Upper Midwest 

are defined using eight mean- and variance-normalized variables: latitude, longitude, grid-level prior sectoral emissions (3 225 

seasons), and grid-level scaling factors (SFs; iteration 8; 3 seasons) derived from the adjoint 4D-Var inversions. Emission 

clusters for other regions are defined using the above eight variables (for total emissions) and the prior sectoral emission 

fractions (7 sectors × 3 seasons). In this way we identify a total of 28 GMM clusters (Fig. S3), construct the Jacobian matrix 

𝐊 based on the associated sensitivities in simulations with tracers tagged to these 28 clusters, and solve d𝐽(𝒙)/d𝒙 = 0 

analytically. The GMM inversions thus derive sector-resolved methane fluxes along with their general spatial distributions. 230 

They provide a middle ground between the source-resolved but spatially constrained sector-based inversions above, and the 

spatially-resolved but source-agnostic adjoint 4D-Var inversions below. 

2.3.4 Adjoint 4D-Var inversions 

The adjoint 4D-Var inversions optimize total methane emissions on the 0.25° × 0.3125° model grid via iterative 

minimization of d𝐽(𝒙)/d𝒙 in a quasi-Newtonian routine (Henze et al., 2007). The resulting state vector contains 6400 235 

elements over the Upper Midwest domain (Fig. 1), thus enabling detailed spatial corrections to the prior emissions on a ~25 

km scale. To avoid overfitting, we impose a 200 km prior error correlation length scale as described previously. We further 

perform a suite of sensitivity inversions to evaluate the robustness of the derived emissions by varying the initial scale 

factors (i.e., employing the GMM-derived scale factors as initial guess in the adjoint optimization; referred to as GMM-ADJ 

in the following), and by varying the regulation parameter 𝛾 ∈ [0.1,1000] and thereby varying the weight of prior versus 240 

observational departures cost function terms. In all cases convergence to the final result is ascertained based on a cost 

function reduction per iteration < 2.5% of 𝐽0.  

2.4 Independent measurements for evaluation 

We evaluate our top-down methane emission estimates using the independent airborne and tall tower datasets shown in Fig. 

1 and described below. Datasets are calibrated using standards traceable to the WMO X2004A calibration scale, with overall 245 
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accuracies < 4 ppb in all cases (Davis et al., 2018; Andrews et al., 2017; Richardson et al., 2017). Comparisons are based on 

5-second (aircraft) and 1-hour (tower) averaged data, with the model sampled at the time and location of measurement.  

1) ACT-America airborne measurements. The Atmospheric Carbon and Transport-America (ACT-America) campaign 

(Davis et al., 2018; DiGangi et al., 2017) featured methane measurements from two aircraft platforms, in both cases by 

CRDS (2401-m, Picarro Inc., USA) at 1 Hz frequency (Davis et al., 2018; Baier et al., 2020). We employ within-PBL 250 

methane observations from ACT-America flights during Jul.-Aug. 2016, Oct.-Nov. 2017, and Apr.-May 2018 to evaluate 

GEM inversion results for summer, winter, and spring, respectively. The 5-second average measurements and along-track 

model output are both aggregated to the model grid and timestep prior to intercomparison. Flights selected for inversion 

evaluation occurred over and downwind of the Upper Midwest (Fig. 1), mainly sampling the southern portion of our domain. 

Livestock (29% of the mean simulated enhancement), fossil fuel (28%), and wetlands (26%) are the three largest methane 255 

source influences along these flight tracks based on the prior GEOS-Chem tagged tracer simulations.  

2) WSD tall tower measurements. Methane is measured at WSD (Wessington, South Dakota;  44.05° N, 98.59° W, 592 m 

above sea level (ASL); (Miles et al., 2018)) by CRDS (CFADS2401 or CFADS2403; Picarro Inc., USA) from a single inlet 

at 60 m above ground level (AGL). The WSD tower is located in the southwest of our analysis region, and thus captures the 

influence of long-range transport under westerly winds and of Upper Midwest emissions under easterly winds. Based on the 260 

prior tagged tracer simulations, wetlands (45% of the mean simulated enhancement) and livestock (30%) are the two largest 

methane source influences at WSD during summer/spring. In winter, livestock (43%) and fossil fuel (41%) sources 

predominate.  

3) KCMP tall tower measurements. Methane is measured at KCMP (Rosemount, Minnesota;  44.69° N, 93.07° W, 290 m 

ASL; (AMERIFLUX, 2019; Chen et al., 2018)) by tunable-diode laser absorption spectroscopy (TGA200A, Campbell 265 

Scientific Inc., USA) from two air sampling inlets at 3 m and 185 m AGL. The KCMP tower is located 25 km south of the 

Minneapolis-Saint Paul metropolitan area and samples a predominantly agricultural footprint (easterly, southerly, and 

westerly winds) along with urban and wetland influences (northerly winds). The main methane source influences at KCMP 

according to the prior GEOS-Chem simulations are from wetlands (50%-56% of the mean simulated enhancement) and 

livestock (22%) during spring/summer, and from livestock (39%) and fossil fuel (27%) during winter.  270 

4) LEF tall tower measurements. Methane is measured at LEF (Park Falls, Wisconsin; 45.95° N, 90.27° W, 470 m ASL; 

(Desai et al., 2015; Andrews et al., 2017)) by cavity-enhanced absorption spectroscopy (LGR 908-0001 Fast Methane 

Analyzer, Los Gatos Research, Inc., USA). Measurements are performed sequentially from three air sampling inlets at 30 m, 

122 m, and 396 m AGL based on the protocol from Andrews et al. (2014). The LEF tower is located in the northeast of our 

analysis region within a mixed wetland/forest landscape. LEF features a larger influence from natural emissions than the 275 

datasets above: based on our prior simulations, wetlands contribute > 67% of the mean methane enhancement during 

summer/spring (versus 44%-56% for the other tall towers); livestock contributes an additional 15%. In winter, fossil fuels 

(34%) and livestock (31%) drive the largest concentration enhancements. 

In the case of the tall tower measurements, we use two approaches to evaluate our inversion results. First, we test the 

optimized model against tall tower data contemporaneous with the GEM flights (Aug. 2017, Jan. 2018, May 2018). Second, 280 

we test the optimized model against tall tower data for the same month in a different year (Aug. 2018, Jan. 2017, May 2017). 

The latter test guards against overfitting to the GEM data; for example, erroneously adjusting emissions to compensate for 

broad-scale model transport errors during the GEM timeframe. In both cases we employ daytime (10:00-18:00 LT) data for 

model-measurement comparison. The WSD tower was not yet established in Jan. 2017 so only the later comparisons are 

possible here. In all cases we use observations from the highest available inlet, with the model sampled at the corresponding 285 

vertical level, to ensure the widest fetch for sampling regional emissions while minimizing near-field influences.  

2.5 Inversion performance 
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All inversions lead to a significant reduction in the cost function, with the adjoint 4D-Var and GMM inversions tending to 

yield larger decreases (36-97%) than the sector-based inversions (12-43%). The adjoint 4D-Var and GMM inversions are 

able to optimize the spatial distribution of emissions, improving the posterior fit to the data and reducing aggregation error.  290 

Figure 3 shows that the derived adjustments to the total regional methane flux are consistent across inversion frameworks. 

Specifically, results point to a wintertime emission underestimate and to very modest (< 10%) springtime corrections. More 

variable results are obtained during summer; however, even here the derived total flux adjustments are ≤ 23% in all cases.  

The sector-based and GMM inversions enable direct source attribution, and we attribute the adjoint-derived emissions based 

on the prior grid-cell source fractions. We find in this way that (as with the total flux) inversion results are also generally 295 

consistent on a sectoral level: uniformly upward adjustments are derived in winter, whereas springtime results point to a 

wetland overestimate but only minor corrections for other sources. As before, sectoral results are more variable during 

summertime; this point is further discussed below. Finally, we show later that geographically consistent emission 

adjustments are obtained across the set of spatially-explicit inversions, further supporting the robustness of our findings. 

The largest disparities in Fig. 3 occur when the methane boundary conditions are optimized in the inversion rather than 300 

prescribed: total regional emissions derived in this way are ~15-25% lower than the ensemble mean during summer and 

winter. The summertime wetland emissions exhibit the strongest such sensitivity, reflecting imperfect seasonal wetland-

background separation in the GEM data. In particular, the only downward adjustments (up to 34%) to the summer wetland 

flux are derived when optimizing boundary conditions; all other inversions yield ≤ 24% positive corrections. These same 

disparities account for the largest spread in derived total flux estimates for summer (scale factors of 0.85 versus 1.23). We 305 

show below that inclusion of the boundary conditions in the state vector for optimization does not consistently improve 

model performance over the base-case, supporting the prior use of ATom data for this purpose.  

We performed a series of sensitivity inversions varying the regulation parameter 𝛾 ∈ [0.1,1000] to test how our results 

depend on the weighting of the observational versus prior components of the cost function. The overall results are robust 

across these tests, with consistent adjustments in terms of their signs and source attribution (Fig. 3 and S4 compare results 310 

for 𝛾  = 10 and 1). Adjustment magnitudes increase with larger 𝛾  due to increased weighting of the observational cost 

function term. We choose 𝛾 = 10 for our base-case analyses as it yields the best overall performance against independent 

measurements (Fig. S5).  

Given findings pointing to inventory underestimates of US oil and gas emissions (Alvarez et al., 2018; Gvakharia et al., 

2017; Peischl et al., 2016; Barkley et al., 2019), we test whether a prior bias for this source could be aliasing our emission 315 

estimates. Specifically, we perform sensitivity inversions (sector-based and GMM) with the prior fossil fuel emissions 

doubled. Two main results emerge. First, the derived livestock emission SFs change by <12% from the base-case, while 

those for wetlands (excluding winter) change by <4%. Second, the “other” source category (encompassing fossil fuels) 

remains close to the prior under both base-case and doubled fossil fuel scenarios. We conclude that i) our wetland and 

livestock estimates are not strongly sensitive to fossil fuel-related emission errors, and ii) the derived oil and gas fluxes are 320 

prior-dependent and only weakly constrained by the GEM observing system.  

In nearly every case, the simulations with optimized emissions agree more closely with independent aircraft and tall tower 

measurements than do the prior simulations (Fig. 4). Exceptions include i) the sector-based inversion versus the WSD tower 

data, and the GMM-ADJ inversion versus the KCMP and LEF tower data. The former likely reflects aggregation error in the 

spatially constrained sectoral optimization. The latter suggests overfitting: the GMM-ADJ emission adjustments improve 325 

model performance during the GEM timeframe (Fig. S6) but not for alternate years (Fig. 4). For all other inversions, the 

optimized emissions yield performance improvements regardless of the evaluation year, providing a strong argument for the 

representativeness of the GEM data and the reliability of our emission adjustments.   
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Together, the ensemble of inversions provides an envelope of solutions for assessing the robustness and uncertainty of the 

results. Below, we discuss emergent findings that are consistent across inversions, and diagnose the associated level of 330 

confidence based on the spread in results.  

3 Optimized methane emissions in the Upper Midwest 

Averaging our seasonal inversion results with the prior values for fall, we find that wetlands represent the single largest (32 

[29-35] %) methane source in the Upper Midwest at 20 [16-23] Gg/d. Here and below, reported central values and 

uncertainties reflect the mean and range across our inversion ensemble. Anthropogenic sources collectively account for the 335 

remaining 68 [65-71] %, with livestock making the largest individual contribution (15 [14-17] Gg/d). Smaller but still 

significant sources are derived for natural gas and petroleum systems (10 [9-11] Gg/d), waste/landfills (8 [7-8] Gg/d), and 

coal mines (6 [5-7] Gg/d); however, as noted above these latter estimates are strongly influenced by the prior. Given the 

predominant role for livestock and wetlands, we focus on these sources and proceed to discuss the above findings in detail 

by season.  340 

3.1 Summer (GEM1): spatial errors in the prior wetland flux and an underestimate for livestock 

Figure 3 shows that the GEM aircraft data broadly supports the total prior summertime methane emissions for the Upper 

Midwest, with a derived correction factor of 1.10 [0.85-1.23]. The resulting posterior seasonal flux is 88 [68-99] Gg/d. On 

sectoral basis, wetlands provide the dominant seasonal emission source (45%, 39 [26-49] Gg/d). Livestock account for 24% 

(21 [18-24] Gg/d), with the remaining 31% (27 [24-32] Gg/d) including a derived 16 [14-21] Gg/d from fossil fuels 345 

(including coal mines) and 8 [8-9] Gg/d from wastewater. 

While the optimized summertime wetland fluxes agree reasonably well with the WetCharts estimate for the region as a 

whole (mean scale factor of 1.00 [0.66-1.24]), this is partly fortuitous: the inversions point to significant (offsetting) spatial 

errors in the prior. Fig. 5-7 show that the individual inversions are consistent in revealing a wetland underestimate in the 

northwest of our domain (reaching 76 mg/m2/day) but an overestimate in the northeast (reaching -77 mg/m2/day). The 350 

northwest wetlands lie predominantly in the Prairie Pothole region of the eastern Dakotas and Canada and have highly 

variable hydrology driven by snowmelt, precipitation, and groundwater inflow. Based on 1997-2009 data these wetlands 

have been declining at a rate of ~25 km2/y (USF&WS National Wetlands Inventory, 2019). Areas to the northeast mainly 

feature coastal wetlands under the influence of the Great Lakes, which based on 2004-2009 data have undergone recent 

expansion by 11 km2/y (USF&WS National Wetlands Inventory, 2019). Our findings here suggest that methane emissions 355 

from Great Lake coastal wetlands (while increasing over time) are presently overestimated, while prairie pothole emissions 

(while decreasing over time) are presently underestimated. 

We further infer from the GEM aircraft measurements a summertime underestimate in regional anthropogenic emissions 

(Fig. 3). In particular, the GEPA prior livestock emissions increase by 24% (4 Gg/d) in the multi-inversion average, with 

scale factors ranging from 1.05-1.41 (1-7 Gg/d). As seen earlier for wetlands, the lowest scale factors (1.05, 1.07) are 360 

obtained when the boundary conditions are allowed to vary in the optimization, with other inversions pointing to a 21%-41% 

(4-7 Gg/d) livestock flux underestimate. The individual inversions are spatially consistent with the livestock underestimate 

manifesting most strongly in the center of the Upper Midwest domain (Iowa/southern Minnesota/southern Wisconsin; Fig. 5-

7). Anthropogenic emissions other than livestock are adjusted upward through the inversions by 15 [1-35] % (4 [0-8] Gg/d) 

in a relatively consistent manner across the region (Fig. 5-7). 365 

3.2 Winter (GEM2): an emission underestimate across sectors 

All inversions indicate that wintertime methane emissions are underestimated in the prior inventories, with an ensemble-

mean scale factor for the total regional flux of 1.27 [1.09-1.38]. We thus obtain a seasonal methane flux of 49 [42-53] Gg/d 

that is dominated by anthropogenic emissions from fossil fuel (37%, 18 [15-20] Gg/d), livestock (29%, 14 [12-16] Gg/d), 
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and wastewater (20%, 10 [8-11] Gg/d). Regional wetland emissions are minor (10%, 5 [4-6] Gg/d) during winter and we 370 

therefore focus the following discussion on anthropogenic sources. 

We find that wintertime livestock emissions (enteric fermentation + manure management) are underestimated by 25% (3 [1-

5] Gg/d) in the GEPA inventory, and that this disparity is most pronounced over the center of the Upper Midwest 

(Iowa/south Minnesota/south Wisconsin). Figures 5-7 show that this is the same area where we infer a summertime livestock 

emission underestimate of comparable magnitude (24%, 4 Gg/d). Later in the Sect. 4, we examine the role of enteric 375 

fermentation versus manure management in driving these differences. 

The wintertime optimization results further point to a 28 [9-45] % (6 [2-10] Gg/d) underestimate of non-livestock 

anthropogenic emissions, with the largest derived adjustments in the southeast of our domain where fossil fuel sources 

predominate (Fig. 5-7). Sustained high methane observations during a GEM2 flight over Iowa under southerly winds (Fig. 

1)—with up to 100 ppb model-measurement mismatches and co-occurring ethane enhancements—similarly suggest an 380 

underestimate of fossil fuel sources to the south of the Upper Midwest, as also diagnosed by Barkley et al. (2019). However, 

for the purpose of analyses here, we note that a sensitivity inversion omitting this flight does not significantly alter our 

results.  

3.3 Spring (GEM3): biased seasonal onset of wetland emissions 

The GEM aircraft data indicate that the prior regional flux during springtime is unbiased when taken as a whole: Fig. 3 385 

shows that the ensemble mean correction factor is 1.01 with a range across inversions of 0.95-1.10, resulting in a spring flux 

of 63 [59-68] Gg/d. On a sectoral basis, wetlands are the largest emission source (33%, 21 [16-25] Gg/d), followed by 

livestock (24%, 15 [14-16] Gg/d), with the remainder including derived contributions of 16 [14-17] Gg/d from fossil fuel and 

9 [8-9] Gg/d from wastewater. 

While the GEM inversions support the prior springtime methane fluxes in terms of total regional magnitude, results point to 390 

biases in the bottom-up wetland emissions and their spatial distribution. Figures 5-7 show that the prior wetland emissions 

during spring exhibit spatial errors similar to those in summer, with an underestimate to the northwest (reaching 15 

mg/m2/day), but an overestimate around the Great Lakes (reaching -48 mg/m2/day). These spatial errors have smaller peak 

magnitude (< 63%) than during summer, and lead to a net 15% wetland flux overestimate for the region as a whole (4 [-1-8] 

Gg/d; Fig. 3). Upper Midwest wetland methane fluxes in the WetCHARTs inventory used here as prior generally exhibit a 395 

sharp onset during late May driven by increasing surface skin temperature (Bloom et al., 2017). The GEM3 flights were 

conducted during 21 May-2 Jun 2018 and reveal fluxes that are lower than these predictions. As discussed in the Sect. 4, this 

implies a bottom-up bias in the timing of the springtime emission onset.  

We derive based on the GEM aircraft measurements springtime livestock emissions within 7 [1-15] % of the prior estimates 

(Fig. 3). The fractional livestock underestimate in GEPA during spring is thus only 30% of the summer and winter biases. 400 

Since emissions from enteric fermentation—unlike those from manure—have little seasonal dependence (IPCC, 2006), the 

differing bottom-up biases for summer/winter versus spring point to errors associated with manure management activities; 

this point is discussed further in the Sect. 4.  

4 Key uncertainties for regional wetland and livestock emissions   

4.1 Wetland methane fluxes: Role of wetland extent and emission temperature dependence 405 

We saw above that the GEM inversions reveal spatial and temporal errors in the WetCHARTs (ensemble mean) prior 

wetland emissions for the Upper Midwest. Below, we combine the inversion results with the individual WetCHARTs 

estimates to derive information on key process parameters driving uncertainty in the predicted fluxes.  
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The WetCHARTs extended ensemble includes 18 members that estimate wetland emissions 𝐹(𝑡, 𝑑) at time 𝑡 and location 𝑑 

as: 410 

𝐹(𝑡, 𝑑) = 𝑠𝐴(𝑡, 𝑑)𝑅(𝑡, 𝑑)𝑞10

𝑇(𝑡,𝑑)
10  

 
(2) 

Here, 𝐴(𝑡, 𝑑) is wetland extent (m2 wetland area/m2 surface area), taken either from GLOBCOVER (Bontemps et al., 2011) 

or the Global Lakes and Wetlands Database (GLWD) (Lehner and Döll, 2004); 𝑅(𝑡, 𝑑) is heterotrophic respiration rate 

(mgC/day per m2 of wetland area) taken as the median monthly value from the Carbon Data Model Framework 

(CARDAMOM; (Bloom et al., 2016)) ; 𝑇 is surface skin temperature (°C); 𝑞10 quantifies the 𝑇-dependence of methane 

emissions relative to heterotrophic C respiration (i.e. the CH4:C temperature dependence), with 𝑞10 = 1, 2, or 3; and 𝑠 is a 415 

scaling factor imposing a global flux of 124.5, 166, or 207.5 Tg CH4/y (Saunois et al., 2016; Bloom et al., 2017). 

Figure 8 shows in a Taylor Diagram the agreement between each of the WetCHARTs ensemble members and the optimized 

wetland fluxes (multi-inversion average). It is apparent from Fig. 8 that 1) wetland extent and 2) CH4:C emission 

temperature dependence (𝑞10) are major factors controlling prediction accuracy, as discussed further below. 

1) Wetland extent. We see from Fig. 8 that the GLWD-based models overestimate the actual wetland emissions derived here. 420 

However, they also exhibit higher spatial correlation with the optimized fluxes than do the GLOBCOVER-based models. 

Despite this emission overestimate (also found over the US Southeast (Sheng et al., 2018b)), GLWD thus more accurately 

represents the wetland spatial distribution across the Upper Midwest landscape. The GLWD employs maximum wetland 

extent estimates derived from a range of sources published during 1992-2000 (DMA, 1992; UNEP-WCMC, 1993; Lehner 

and Döll, 2004), while the GLOBCOVER data employs year-2009 space-based measurements from Envisat’s Medium 425 

Resolution Imaging Spectrometer (Bontemps et al., 2011). However, the mean 2.6-fold difference between the GLWD- and 

GLOBCOVER-based methane emissions for the Upper Midwest is much greater than any wetland area changes during 

2000-2009 (USF&WS National Wetlands Inventory, 2019). This high sensitivity of emissions to wetland extent was 

likewise demonstrated on a global basis in the WETCHIMP model intercomparison, which reported annual flux estimates 

varying by ±40% from the mean with extensive spatio-temporal disparities (Melton et al., 2013).  430 

2) Temperature dependence (𝑞10). We find for both GLWD and GLOBCOVER that a CH4:C 𝑞10 of 3 yields the lowest 

centered root mean square error (RMSE) compared to the optimized fluxes. This corresponds to an average CH4:𝑇 𝑞10 (i.e., 

net 𝑇-dependence for methane emissions) of 5 across the Upper Midwest domain (Fig. S7), versus the prior value of 2.4. 

Eddy covariance measurements at the Bog Lake peatland site in northern Minnesota (see Fig. 1) during 2015-2017 imply a 

CH4:𝑇 𝑞10 of 2.9 but based on 10 cm soil temperatures (Deventer et al., 2019). For comparison, Sheng et al. (2018b) found 435 

that WetCHARTs ensemble members employing CH4:C 𝑞10  = 1 exhibited the closest agreement with observations for 

wetlands in the US Southeast.  

However, the bottom-up approach of prescribing 𝑞10 values has inherent limitations, and greater accuracy will require more 

explicit treatment of underlying drivers. Methane in wetlands is generated through anaerobic microbial metabolism in 

waterlogged soil, but a separate population of methanotrophic bacteria above the anoxic-oxic boundary can oxidize 50% or 440 

more of that methane before it is able to escape to the atmosphere (Segarra et al., 2015). These competing processes at 

different depths lead to large uncertainties when defining a single 𝑞10 value—even for an individual site. For example, long-

term measurements at the Bog Lake peatland site referenced above reveal large year-to-year CH4:𝑇 variability associated 

with water table fluctuations (Feng et al., submitted). Previous site-level studies likewise report a wide range of CH4:𝑇 𝑞10 

values (2-12) depending on location, year, and soil temperature depth (Kim et al., 1998; Jackowicz-Korczyński et al., 2010; 445 

Mikhaylov et al., 2015; Marushchak et al., 2016; Rinne et al., 2018).  

Finally, as discussed earlier the GEM inversions indicate a bottom-up wetland flux overestimate during spring that may 

reflect incorrect seasonal timing for the onset of emissions. The Bog Lake peatland eddy covariance measurements support 

this idea, showing that in many years emissions rise later in the spring than is predicted by the WetCHARTs ensemble mean 

(Fig. S8). Soil temperatures at depths relevant to microbial processes can exhibit a significant lag relative to the surface skin 450 
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temperatures used by WetCHARTs for emission estimation (Pickett-Heaps et al., 2011), and we hypothesize that this lag is 

the primary reason for the springtime discrepancy found here. Such lags vary with environmental conditions such as snow 

cover, water table, and other factors (Pickett-Heaps et al., 2011). Better characterization of the coupled effects of soil 

temperature and hydrology on emissions is thus needed to improve the fidelity of methane flux estimates.  

4.2 Livestock methane: Enteric emissions well-represented but large uncertainties for manure 455 

The GEM inversions point to mean underestimates in the prior GEPA livestock emissions of 24 (5-41) %, 25 (9-40) %, and 

7 (1-15) % in summer, winter and spring, respectively. Below, we explore these discrepancies by partitioning the derived 

livestock emissions according to the geographic distribution of beef cattle, dairy cattle, and hogs.  

Figure 9 shows county-level animal distributions from the 2017 US Department of Agriculture Census of Agriculture 

(USDA-NASS, 2018). Beef cattle, dairy cattle, and hogs have distinct spatial distributions, with highest population densities 460 

in the Dakotas, Wisconsin/central Minnesota, and Iowa/southern Minnesota, respectively. They also employ different 

manure management strategies: in our study region, liquid systems, which have > 8 higher methane conversion factors than 

dry systems (USEPA, 2016), account for an estimated 1%, 57%, and 95% of beef, dairy and hog management activities, 

respectively. Dry systems make up the remainder. As a result, enteric emissions are thought to account for more than > 95% 

of the methane flux from beef facilities but only 60% for dairies (they are minor for hog facilities) (Yu et al., 2020).  465 

The above spatial segregation affords an opportunity to better understand methane emissions by livestock type and (by 

extension) enteric versus manure contributions. To that end, we partition our optimized fluxes by computing mean livestock 

emission scaling factors (SFs) separately for model grid cells with beef cattle, dairy cattle, or hogs representing > 70% of the 

total animal population. In each case we present base-case estimates with associated uncertainties based on the multi-

inversion mean and range. Results shown in Table 1 indicate that beef emissions are well-represented in the bottom-up 470 

inventory across seasons (base-case adjustments < 15%). On the other hand, the bottom-up dairy cattle and hog emissions 

exhibit seasonally dependent errors, with a base-case underestimate of ~30% in summer and winter but no apparent bias in 

spring. Taken together, these findings suggest an accurate treatment of enteric emissions in the GEPA inventory but an 

underestimate of manure emissions with inaccurate seasonality.  

The variability of manure emission factors across management systems and their high sensitivity to environmental factors 475 

may contribute to the above discrepancies. Along with the large differences between liquid and dry systems, temperature 

plays a major role in regulating manure emissions, and model misrepresentation of this effect (which can occur, for example, 

when using surface skin temperatures to approximate manure lagoon temperatures, as in the GEPA inventory) can lead to 

significant bottom-up errors in both the magnitude and seasonality of predicted fluxes (Park et al., 2006). Local factors such 

as solar absorptivity, wind, manure depth, pH, and humidity can also influence emissions (Rennie et al., 2017; VanderZaag 480 

et al., 2013) but are not generally accounted for in inventories. Further, use of lagoon covers and anaerobic digestion systems 

can reduce methane emissions by up to 90%, and inadequate information on such factors will lead to inventory errors. 

Seasonal manure application is also likely contributing to the bottom-up errors found here. The GEPA inventory computes 

manure emissions assuming constant on-site manure volume, with seasonal differences arising solely from the temperature-

dependence of microbial activity (Maasakkers et al., 2016). However, in the Upper Midwest, manure is applied to fields 485 

once or more per year, most commonly in spring (MPCA, 2019). This causes manure volume on site to vary significantly by 

season. Manure emissions after field application are less than 1% of those occurring during storage, and arise mainly from 

manure-dissolved methane that escapes immediately after application (Amon et al., 2006; Niles and Wiltshire, 2019). We 

speculate that this factor is the reason the GEM data point to an inventory underestimate for manure in summer and winter 

but not spring. Inclusion of location-specific information on the timing and rate of manure field application is thus likely to 490 

improve bottom-up methane emission estimates. 

Findings from this work are consistent with previous studies. For example, a recent bottom-up study using updated animal, 

feed, and management information recommended revising the IPCC 2006 emission factors by +8% for enteric emissions and 
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+37% for manure emissions (Wolf et al., 2017). This agrees with our findings here of a +15% adjustment for beef facilities 

(dominated by enteric emissions) and an approximate +30% summer and winter adjustment for dairies and hog facilities 495 

(with a larger role for manure emissions). In our previous work, we applied aircraft-based mass balance to quantify facility-

level emissions for concentrated animal feeding operations in the Upper Midwest and found (as here) good top-

down/bottom-up agreement for enteric emissions but discrepancies for manure (Yu et al., 2020). A recent site-level study at 

a large Wisconsin dairy farm observed low manure emissions (~30% of the enteric flux) owing to frequent field application 

throughout the year (Wiesner et al., 2020), further supporting our characterization of manure management as a key 500 

uncertainty in current large-scale bottom-up inventories. 

5 Summary and outlook 

We applied aircraft measurements from the GEM campaign in a multi-inversion framework to improve understanding of 

seasonal methane emissions in the Upper Midwest. Together, our optimized emissions for summer, winter and spring 

indicate that wetland emissions account for 32% (20 [16-23] Gg/d) of the total regional flux during these seasons. 505 

Anthropogenic sources make up the remainder, with the largest contribution from livestock (15 [14-17] Gg/d). Smaller but 

still significant sources are derived for natural gas and petroleum systems (10 [9-11] Gg/d), waste/landfills (8 [7-8] Gg/d) 

and coal mines (6 [5-7] Gg/d); however, these are only weakly constrained in the inversions by the GEM observations.  

Our inversions point to important spatial errors in the WetCHARTs ensemble-mean wetland emissions, with an 

underestimate in the Prairie Pothole region (reaching 76 mg/m2/day in summer) but an overestimate for Great Lakes coastal 510 

wetlands (reaching -77 mg/m2/day in summer), and a possible timing bias for the spring emission onset. Based on the 

WetCHARTs ensemble, wetland extent and emission temperature dependence are the largest uncertainty sources in bottom-

up estimates for this region. WetCHARTs estimates based on the GLWD extent dataset tend to overestimate emissions but 

have higher spatial correlation with the optimized fluxes than GLOBCOVER-based estimates. WetCHARTs estimates 

employing a CH4:C 𝑞10 of 3 have the lowest RMSE with respect to our posterior emissions, in contrast to findings for the US 515 

Southeast where a value of 1 yielded the best model-measurement agreement (Sheng et al., 2018b). However, a body of 

literature shows that the temperature dependence for methane emissions is highly variable across locations, time, and soil 

depth. Accurate flux predictions will thus require more explicit treatment of underlying drivers including snow cover, water 

table, and the coupled effects of soil temperature and hydrology on emissions.   

The optimized livestock methane emissions derived here for the region are ~25% higher than the GEPA estimates during 520 

summer and winter, but agree with the bottom-up estimates (to within 10%) during spring. Since enteric emissions (unlike 

those from manure) are relatively consistent throughout the year, this seasonal discrepancy suggests bottom-up errors 

associated with manure. We propose that the lower emission adjustment during spring reflects management factors such as 

widespread application of manure to fields at that time. 

We further partition the derived livestock emissions based on county-level animal populations for beef cattle (> 95% enteric 525 

emissions), dairy cattle (~60/40% enteric/manure emissions) and hogs (mostly manure emissions). In this way we find that 

enteric fermentation emissions are well-captured by the GEPA inventory with low overall bias, but that manure emissions 

are underestimated by as much as 30% in summer and winter, with biased seasonality. Better representation of manure 

management (for example, accounting for the timing and rate of field application, and incorporating finely-resolved 

information on management systems) can improve the bottom-up estimates. 530 

Findings here highlight the importance of Upper Midwest agricultural emissions for both the regional (36% of annual Upper 

Midwest anthropogenic emissions) and national (~35% of North American livestock emissions) methane budget. These 

emissions should thus receive high priority for mitigation efforts.  

Enteric emissions can be reduced through approaches including diet modification, vaccination, nutritional supplements, or 

animal selection; the effectiveness of such approaches and their economic benefits are the subject of a large body of work 535 
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(Martin et al., 2008; Boadi et al., 2004; Smith et al., 2008; Montes et al., 2013; Nisbet et al., 2020; Hristov et al., 2015). 

Nutritional changes to reduce methane emissions can influence animal health and decrease plant-available N in fertilizer; 

additional management is needed to address those issues (Baker et al., 1975; Montes et al., 2013). Enteric emissions can also 

be reduced by up to 85% through use of biofiltration systems, however, in some cases this can lead to increased N2O 

emissions and assessment of the full facility-level greenhouse gas impact is therefore necessary (Montes et al., 2013; Nisbet 540 

et al., 2020). 

Manure methane emissions can be reduced by up to 90% during storage through approaches that suppress methanogenesis 

(e.g., via manure acidification, slurry aeration, or lowered storage temperatures) or capture methane for use (via anaerobic 

digestion) (Chadwick et al., 2011; Montes et al., 2013). In addition, frequent field application can reduce methane storage 

time, leading to reduced emissions. However, consideration of crop demand, soil properties and manure nutrient content is 545 

needed to avoid exacerbating water pollution and N2O emissions (Sutton et al., 2001; Chadwick et al., 2011; Reay et al., 

2012).  

In the US, 255 anaerobic digestor installations reduced greenhouse gas emissions by 43.8 million metric tons CO2 Eq. while 

generating 11 billion kWh of electricity during 2000-2019 (AgSTAR, 2019). Furthermore, based on the source estimates 

derived here, application of anaerobic digestion (at assumed 60% efficiency (Montes et al., 2013)) and biofiltration (85% 550 

(Montes et al., 2013)) to all Upper Midwest manure and enteric emissions could in theory yield a 4.5 Tg/y methane source 

reduction. This is an upper limit as it assumes uniformly high-efficiency systems and feasibility across all facilities. 

However, 4.5 Tg/y is 1.7× the estimated methane flux for the entire Permian basin (representing the largest emission ever 

reported from a US oil/gas-producing region (Montes et al., 2013; Zhang et al., 2020)). Techniques and policies to advance 

the above management strategies thus have significant potential for methane source mitigation and energy production in the 555 

Upper Midwest and nationally. 
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Figure 1. GEM flight tracks and additional datasets used in this study. The left panel shows Pacific flight tracks for the ATom3 and 915 
ATom4 campaigns used for evaluating modeled boundary and initial conditions. Also shown are the ACT-America flight tracks (C130 in 

cyan, B200 in red) used here for posterior model evaluation. The inner red box (40°-50° N, 87°-100° W) shows the GEM flight region that 

is expanded in the right panels; the black box (35°-55° N, 80°-105° W) shows the Upper Midwest analysis region employed for source 

inversions; and the blue box (9.75°-60° N, 60°-130° W) demarks the GEOS-Chem nested North American domain. The right panels show 

the GEM flight tracks colored by observed methane mixing ratios and superimposed on the prior annual bottom-up emissions described in-920 
text. Also shown are locations for the radiosonde launches and tall towers employed here, along with the Bog Lake peatland eddy flux site. 
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 925 

Figure 2. Prior methane emissions in the Upper Midwest for the GEM 1-3 flight periods (GEM1 – summer, 20 Jul.-24 Aug. 2017; GEM2 

– winter, 03-28 Jan. 2018; GEM3 – spring, 07 May-2 Jun. 2018). Emission inventories are as described in-text. The black box indicates 

the inversion domain.  
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Figure 3. Methane emission scale factors by sector derived from the multi-inversion analysis over the Upper Midwest (black box in Fig. 

1). Results are shown for GEM1 (left; Jul.-Aug. 2017), GEM2 (middle; Jan. 2018) and GEM3 (right; May-Jun. 2018). Matrix columns 

show aggregated regional scale factors for total methane emissions (TOTAL), livestock (LIV), wetlands (WTL), and other sources (OTH). 

Rows show results from seven individual inversions (for details see Text S3) along with the ensemble mean. Bar plots at top show the 935 
emission fractions for each source grouping based on the ensemble-mean inversion results. Boundary condition scale factors for the 

corresponding sector-based and GMM inversions are respectively 1.00 and 1.02 (summer), 1.00 and 1.01 (winter), 1.00 and 1.00 (spring).  
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Figure 4. Inversion performance evaluation against independent observations from alternate years. Evaluation datasets include airborne 940 
measurements from the ACT-America campaign and tall tower measurements from Wessington South Dakota (WSD), Rosemount 

Minnesota (KCMP) and Park Falls Wisconsin (LEF). Each matrix displays summary performance statistics for the seven inversions, and 

for the ensemble mean, with respect to the indicated evaluation dataset. Columns in each matrix show the model mean bias (M-O; ppb), 

mean absolute bias (|M-O|; ppb), model:measurement slope (note this is within 1% of unity in all cases), and model:measurement 

Pearson’s correlation coefficient (R). Values are colored by rank for the above criteria. See Sect. 2.4 for details. 945 
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Figure 5. Wetland and livestock methane emissions derived from the GMM inversions with associated posterior-prior differences. Results 950 
are shown for GEM1 (Jul.-Aug. 2017), GEM2 (Jan. 2018) and GEM3 (May-Jun. 2018).  
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Figure 6. Same as Fig. 5, but showing results for the GMM inversions with boundary condition optimization.   955 
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Figure 7. Methane emissions derived from the adjoint 4D-Var inversions with associated posterior-prior differences. Results are shown for 960 
GEM1 (Jul.-Aug. 2017), GEM2 (Jan. 2018) and GEM3 (May-Jun. 2018). GMM-ADJ results are similar (Fig. S9-S10). 
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Figure 8. Taylor diagram evaluating the performance of Upper Midwest wetland emission estimates from the WetCHARTs inventory 965 
against the optimized fluxes derived here. The colored symbols show the 18 WetCHARTs extended ensemble members, which feature: 

three temperature sensitivity factors (CH4:C 𝑞10 = 1, 2, or 3), three scale factors to obtain global emissions of 124.5, 166, or 207.5 Tg/y; 

and two wetland extent datasets (GLOBCOVER and GLWD, marked with open symbols and X's, respectively). Symbols are colored by 

flux magnitude relative to the optimized emissions. Three statistics are shown in these plots: 1) the slope between each symbol and the 

origin reflects the spatial correlation between that model and the optimized emissions; 2) the distance between each symbol and the origin 970 
reflects the standard deviation of that model estimate; and 3) the distance between each symbol and the optimized value reflects the root-

mean-square error of that model estimate relative to the optimized solution. Optimized results correspond to the multi-inversion ensemble 

mean.  
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Figure 9. County-level animal populations for (a) beef cattle, (b) dairy cattle, and (c) hogs, based on the 2017 US Department of 

Agriculture Census of Agriculture (USDA-NASS, 2018). 
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Table 1. Derived methane emission scale factors for livestock by animal category 

Animal 

category   

Analysis 

counties  

  Seasonal scale factors1 

  Summer   Winter   Spring 

Beef   646   1.12 [0.98, 1.28]   1.15 [1.05, 1.24]   1.09 [1.04, 1.13] 

Dairy   52   1.28 [0.97, 1.75]   1.30 [1.14, 1.59]   1.00 [0.81, 1.18] 

Hog   428   1.29 [1.09, 1.57]   1.28 [1.12, 1.48]   1.08 [0.93, 1.20] 
1 Results shown reflect the ensemble mean and range across all inversions. 
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